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Subtracting Out Complex Singularities 
in Numerical Integration 

By F. G. Lether 

Abstract. This paper is concerned with the numerical approximation of definite inte- 
grals over [- 1, 1 ], in which the function f to be integrated has isolated singularities 

near [-1, 1 ]. Complex variable techniques are used to study the effectiveness of the 

method of subtracting out complex singularities. 

1. Introduction. This paper deals with the approximation of integrals of the 
form 

IO= f1 co(x)f(x) dx, 

where X is a given weight function. 
When f is well behaved, standard quadrature techniques often produce accurate 

approximations to I(f) using relatively few evaluations of f. However, it is well 
known that singularities of f in the complex plane near [- 1, 1], may have adverse 
effects on the accuracy of the commonly employed numerical integration methods. 

In this paper, a method is presented for approximating I(f) when f has isolated 
complex singularities near [- 1, 1]. The idea employed is essentially an extension 
into the complex domain of the method of subtracting out real singularities found in 
[1] and [2, p. 202]. An error analysis is given that determines conditions under 
which this technique is effective. 

2. Preliminaries. Let 

(2.1) I(f) = Qn(f ) + Rn?(f 

where 
n 

Qn(f) = E Wkf(Xk), 
k=1 

be a given quadrature rule. Assume that (2.1) has precision d and that xk G [-1, 1]. 
We would expect I(f) t Qn(f) to be a good approximation for nonpolynomial 

functions f, provided f can be accurately approximated on [- 1, 1 ] by a polynomial 
of degree < d. This is generally not the case when f has singularities in the complex 
plane near [- 1, 1] . Therefore, it is reasonable to consider the possibility of sub- 
tracting from f some function s, so that f - s has no singularities near [- 1, 1 ] . 
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By (2.1) and the identity 

f(x) = s(x) + [(AX) - s(x)] 

we can write 

(2.2) I(f) = I(s)+ Qn (P) +Rn ) 

where 

p(x) = f(x) - s(x). 

Suppose that a function s can be determined so that a closed form for I(s) is known, 
and that ep resembles a polynomial. Then we may think of the right side of (2.2) as 
consisting of the following components: a known definite integral; a quadrature rule 
evaluation of (p = f - s; a remainder term. 

3. Subtracting Out Isolated Singularities. Let f(z) denote the analytic continua- 
tion of f(x) into the complex z-plane. Assume that f(z) is analytic in the finite z- 
plane, except for isolated complex singularities at aj f [- 1, 1 ], j = 1, 2, 3, . . . 

Consider the m singularities a1, 1 < ? < m, of f near [- 1]. For each j, let 

ri and the constants b,,X be given, and introduce the function 

(3.1) Pj(x)= Z bv(x -a1)-v, 1 A j Am. 
v=l 

Finally, set 

m 
s(x) = (x) 

j=1 

and as before, define ep by 

m 

f(x)= , P,(x) + p(x). 
j=1 

Then (2.2) becomes 

m 
(3.2) I(f) = - 

E bv jT'('-1)(aj)/(v - 1)! + Qn(ip) + Rn?0) 
j=1 v=1 

where we require a closed expression for 

MZ)= 
COW 

dx, z (?[-15 ]. 

(See Section 5.) 

Although (3.2) is valid for any choice of m, r1 and the bv ,'s, their selection 

influences the accuracy of the method. As a simple illustration, let 

(3.3) f(x) = qN(x)(x - a1)-2(x - a2)-2, 

where qN is a polynomial of degree N > 4 and a1, a2 ? [- 1, 1]. Take m = r= 

r2 = 2 and let b1 ,j and b2,1 be the Laurent coefficients in the principal part of f 
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about the second order pole a,, j = 1, 2. This choice forces (p to be a polynomial of 
degree N - 4. If the precision of (2.1) satisfies d > N - 4, then R,(Qp) = 0 and (3.2) 
becomes 

'2 

(3.4) I(f) = - Z [bj7,(a) + b2,1T'(a1)] + Qn(?P) 
j=1 

The work required to compute the Laurent coefficients is repaid, since Qn,(p) is more 
accurate than Qn(f). 

Unless f is a rational function, as in (3.3), it is not always possible to choose the 

parameters m, wr1 and the bv 1's in (3.2) to make Rn(e) = 0. However, for general 
functions f we can make Rn(ep) negligible in certain cases by taking s to be the sum of 

the principal parts of f at its nearby singularities, as was done in the previous example. 
For this choice of s, ep has no nearby singularities and Gaussian rules can profitably be 

used for (2.1) to maximize d. This technique is particularly effective when f is a 

meromorphic function having only a few low order poles. For example [4], consider 

the numerical approximation of 

= (X2 + 10-4)-l ex 

by (3.2). The integrand has simple poles at al = 0.01i and a2 = al. Take c(x) -1, 
m = 2 and r1 = 2 = 1 to account for both of the poles. The required residues are 

b = Res f(z) = -50i exp (0.Oli) 
z=al 

and b1 ,2 = b1 ,1 * (3.2) gives 

Ii (f= I1(s) + Qn((P) + R?n 

where 

I1 (s) = -2Re { bl, T(al)} 

and T(z) = ln[(z + 1)/(z - 1)]. For the basic generating rule (2.1), we use the n- 
point Gauss-Legendre rule. Table 1 contains the Gaussian quadrature results Qn(f) 
and the improved approximation Ii (s) + Qn(eP). 

TABLE 1 

n Qn(f) Ia(s) + Qn(sP) 
2 7.02 313.171804022 
3 8891.32 313.172055084 
4 13.24 313.172056236 

I1 = 313.172056239 

The superiority of (3.2) over the Gauss-Legendre rule (2.1) is quite evident in this 

case. 
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4. Error Analysis. The idea of subtracting off singularities exactly, so that 

Rn(Qp) = 0, is in theory not restricted to the case when f is a rational function. In 
the following work we seek other functions f for which Rn((p) = 0. 

To discuss the effect the singularities a1 have on the numerical approximation of 
If), we introduce the following contour. Let r be a simple, closed, rectifiable contour 
which contains [-1, 1] in its interior, ri. Assume that the only singularities in ri - [-1, 
1] area,, <j<m. 

Let (3.1) be the principal part of f at a,. If a, is an essential singularity, then 

,= w and (3.1) is an infinite series. Since a, f [-1, 1], (3.1) is absolutely and uni- 
formly convergent for z = x E [- 1, 1] . Of course, this is immediate in the case when 

a, is a pole of order r1, since (3.1) is then a finite sum. In the latter case the Laurent 
coefficients can be expressed in the form 

XV' 
= 

-v) lima dzT-v [(z -aj)Tf(z)] 

v = 1, 2, ..., ,where r = r. 

THEOREM 1. Under the previous assumptions on r and (3.1), the quadrature 
error in (3.2) is given by 

(4.1) Rn(sP) = Jrkn (z)f(z) dz, 

where the kernel function kn(z) = Rn [(z - x- I 

If 

a = minizi> 1, 
zeF 

then 

(4.2) iRJ(P)l < enl(r)Mr(f)-d-2(1 - 0-1)-l /27r 

where 

l(r) = length of r, en = sup IRn(Xv)I < 
V>,d+ 1 

and 

Mr(f)= max If(z)I. 
zeF 

Proof For x E [- 1, 1 ] the residue theorem yields 

21ri fr(z - x)- f(z) dz = f(x) + E Res [(z - x)-lf(z)] 
(4.3) j=1 z =a m 

= Ax) - Pi P(x) = P(x). 
j=1 

The linear functional Rn can be moved through the integral sign in (4.3) to obtain 
(4.1). 

For lzI > 1, the series 

(z - x)- = E xVZ-v 
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is uniformly convergent on -1 < x < 1. Since (2.1) has precision d, 

kn(z) = E Rn(xv)z vi, Izi > 1. 
v>d+ 1 

Therefore, 

kn(z) I en en e-d-2(1 _ a-)- 
v>d+ 1 

for z E r. (4.2) follows directly from this inequality and (4.1). This completes the 
proof. 

Stenger [5] has tabulated the constant en for several of the Gaussian rules and 
uses the notation v(n) in place of en. 

The inequality (4.2) has an interesting application. Take r = rr = {z: Izj = r}. 

Suppose we let r -f in such a way that no singularity a1 E rr, and assume for this 
sequence of radii there exists a constant c, independent of r, such that 

(4.4) max If(z)l < cr' . 
Izlkr 

By (4.2) and (4.4), 

(4.5) LRG((p)l < cenr (l r- ) 

Since the right side of (4.5) approaches zero as r - oo, we have the following result. 
COROLLARY 1. The rule 

(4.6) I(f) = -I E bvj7P v (a.)/(v - 1)! + Qn((P) 
j>1 v=1 

is exact for all functions f satisfying (4.4), where the summation on j extends over all 

isolated singularities of f 
McNamee [3, p. 379] has previously considered the special case of (4.6) when 

f has simple poles and (2.1) is the n-point Gauss-Legendre rule. 
It follows from Corollary 1 that (4.6) is exact whenever f is a rational function, 

provided the precision d of (2.1) is sufficiently large. This agrees with our comments 
regarding (3.4). However, (4.6) is not restricted to rational functions. For example, 
it holds for the meromorphic function (x + 2)-2(sin 10rx - 1.1)-l, which has an 
infinite number of poles, and the function (x + X)-2 exp [(x + X)-1], X > 1. The 
latter function has an essential singularity at -X. 

That (4.6) is exact for certain functions having an infinite number of isolated 
singularities, or an essential singularity, is mainly of theoretical interest. In practice, 
we cannot subtract out the singularities exactly to make Rn(ep) = 0, because s con- 
tains an infinite number of terms in these cases. The goal is to subtract off as much 
of the singular part of f as practical, in order that ep = f - s resemble, but not neces- 
sarily coincide with a polynomial. 

5. Hilbert Transforms. In applications of (3.2) it is convenient to have a closed 
form for the Hilbert transform T(z). These can be worked out for several of the 

commonly encountered weight functions. 
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Case 1 . T(z) = 1 jx im (z - x)1 dx. 

T(z) = zmIn Z -2 ? zm-1-2k/(2k + 1) if m = 2t, 

and 

2 t 
T(z) = zmIn l2 1 _ ZmZ2k/k if m = 2t + 1, 

k=1 

m = 1, 2, 3. The second summation is defined as zero when t = 0. 
Case 2. T(z) = f1xmlI /2(z - x)1 dx. 

T(z) =-(V/Z)2m ln - + i-2 E zk/(2m - 2k -1), 

m = 0, 1, 2, ... Here the summation is defined as zero when m = 0. 
Case 3 [6,p. 75]. T(z) =f 1(1 -x)N(1 +x)A(z -x)-1 dx, c >-1. 

?'= 0 (3= 0 T(z) = 1n _ 1 

Z?1 

o= 0 (= 1 T(z)=(z+1)ln Z_-2 
Z -1 

o= 0(3=2 T(z)=(z+1)21nZ l - 2z-4 

Z - 13 
oc = 0 ,B3= 3 T(z) =(z?+1)31nZ- 1l-2z2 -6z 203 

t 
0 (3= 4 T(z) = (z + 1)4 InZ + 1 2z3 - 8z2 _38z 32 

Z - ~~~3 3 

( 
1 

T(z) = rrz - rr(z - 1)11/2(z + 1)1/2 
1 p - 1T(z) = 7r/[z_ ) 2 +) / 

1 1 
= 2~ (3 =-2- T(z) = rr/[(z - 1)1/12(z + 1)1/21 

1 1 

cl= 1 (3'= 1 T(z)=(I-z2)1n1Z +?2z 
Z - 1 

3 3 T~\.I\/(ll23 37T 

?t = 2 a = T(Z) = 7r [(z - I)' /2(z + I)l /2 ]3 7FrZ3 + 37 Z. 2 2= 2 ~)rLz1~-1Jrz- 

The Gauss-Jacobi rules on - 1 < x < 1 corresponding to the special cases at = 0 
or ( = 0 are frequently tabulated [2, pp. 118-121] on [0, 1]. For this reason we 
list the Hilbert transform in the form given in Case 2. All of the results in Sections 
1-4 then apply with [- 1, 1] replaced by [0, 1 ]. 

In the above listing the branch cut for the complex natural logarithm and square 
root functions is taken to be the negative real axis. When computing T(z) the stan- 
dard FORTRAN library routines CLOG and CSQRT can conveniently be employed. 

For Izi > 1, it may be useful to compute T(z) from the series 
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T(z)- E I(x=)z-v-1 

provided the moments corresponding to cX are known. 
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